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A newborn infant with ambiguous genitalia is a complex enough problem to unravel without any
further clouding by confusing terms. The nomenclature ‘intersex’, ‘hermaphrodite’ and ‘pseudo-
hermaphrodite’ is anachronistic, unhelpful, and perceived to be pejorative by some affected fam-
ilies. In its place, a consensus statement recommends the term ‘disorder of sex development’
(DSD), a generic definition encompassing any problem noted at birth where the genitalia are
atypical in relation to the chromosomes or gonads. The karyotype is used as a prefix to define
the category of DSD, replacing the arcane terminology of male or female pseudohermaphrodi-
tism (now known as XY DSD or XX DSD, respectively). The new nomenclature has spawned
a simple and logical classification of the causes of DSD. In this chapter new facets of gonadal
dysgenesis and novel defects in steroid biosynthesis are reviewed in relation to the DSD classi-
fication, and options for early, non-invasive fetal sexing are described. Future research to deter-
mine many causes of DSD will benefit from the use of this universal language of scientific
communication.
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The newborn infant with ambiguous genitalia posing an immediate problem of sex
assignment is sometimes described as an endocrine ‘emergency’. While this clinical
scenario does not meet the traditional criteria for a life-threatening emergency, the
problem is certainly immensely distressing to the parents and extended family. They
will fail to comprehend why the instantaneous sex assignment that usually occurs at
birth is not possible. To compound the problem, health professionals may inadver-
tently add to the ‘ambiguity’. If the anatomy of the external genitalia is not confusing
enough, further problems will be engendered by the use of mythological terms such as
hermaphroditism and its commoner derivative, pseudohermaphroditism (male or
* Tel.: þ44 1223 336885; Fax: þ44 1223 336996.

E-mail address: iah1000@cam.ac.uk

1521-690X/$ - see front matter ª 2008 Elsevier Ltd. All rights reserved.

mailto:iah1000@cam.ac.uk
http://www.sciencedirect.com


120 I. A. Hughes
female). The word intersex has been in use for some time, but is not favoured by many
families with ambiguous genitalia, some of whom regard the term as pejorative. Such
a situation cannot be ignored, and there has been a groundswell of opinion that
a comprehensive review of the management of intersex is needed. This would recog-
nize the multidisciplinary approach necessary to resolve the problem. Hence a range
of health professionals would need to engage in a discourse to produce a consensus
document on the management of intersex disorders.

THE CHICAGO CONSENSUS

The European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric
Endocrine Society jointly organized a meeting of endocrinologists, surgeons, geneti-
cists, psychologists, and patient advocacy group members, all representing a world
community involved with the management of intersex disorders. A consensus docu-
ment was subsequently published.1–3 It has become known as the Chicago Consensus
by virtue of its generation in the ‘windy city’.

The Consensus document is far-ranging and delves into areas of longer-term man-
agement and outcome. Already the consequences of proposals contained within the
Consensus relating to diagnosis and treatment are being evaluated.4 A powerful driver
to hold a Consensus arose from dissatisfaction with current nomenclature, espoused
by both health professionals and patients alike. The generation of a new nomenclature
rather serendipitously spawned a radical change in the classification of disorders of sex
development; these two components are the subject of this review.

NOMENCLATURE

The word intersex refers primarily to the clinical scenario of an infant born with exter-
nal genitalia sufficiently ambiguous that sex assignment is not possible. A prototypic ex-
ample is a Prader stage III–IV virilized female infant with congenital adrenal hyperplasia
(CAH). An example arising from under-virilization of a male infant is partial androgen
insensitivity syndrome, manifest as ambiguous genitalia, for which there are scoring
systems to quantify the degree of masculinization.5,6 However, not all cases of CAH
manifest as intersex, and the complete form of androgen insensitivity syndrome
(CAIS) is patently not an intersex condition. Consequently, the recommended nomen-
clature to replace intersex is the umbrella terminology ‘disorder of sex development’
(DSD). This is defined as a congenital condition in which development of chromosomal,
gonadal, or anatomical sex is atypical. It can be argued that this embraces such a variety
of conditions as to be meaningless in specificity. However, the nomenclature has no
diagnostic purpose other than as a starting point towards that goal. The inclusion of
the term congenital within the definition excludes all the conditions listed as causes
of precocious or delayed puberty. The acronym DSD is not in common usage for
any other ‘competing’ medical disorder.

Following publication of the Consensus statement, a number of responses ap-
peared in the correspondence columns of the journals. Of some concern was use
of the word ‘disorder’ in the DSD definition, although there was almost unanimity
of opinion in favour of removing the term ‘intersex’ from the medical lexicon.7–9

The fact that individuals with CAIS are normal phenotypic females prompted the
suggestion that ‘variations of reproductive development’ be used as an alternative
nomenclature. Furthermore, the acronym (VRD) would avoid the clash with
a common congenital cardiac anomaly if ‘variation of sex development’ (VSD) was
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used. A mutation in the CYP21 gene results in a disorder of steroidogenesis and DSD,
the pathophysiology as clear as a mutation in the CFTR gene resulting in a disorder of
chloride ion transport and chronic lung disease. These examples are clearly not just
variations in normal physiology. Adding some diagnostic specificity to the generic
DSD definition utilizes knowledge of the karyotype. This is based on recognizing
the central role of karyotype analysis in the investigation of most cases of DSD,
and knowledge in general about sex chromosomes. The decision to categorize ac-
cording to karyotype led to the logical step of casting the abstruse and confusing
term pseudohermaphroditism into medical antiquity. Table 1 summarizes the compo-
nents of the revised nomenclature. It is now gaining currency in the scientific litera-
ture, whether the study is focused on endocrine, genetic, surgical or psychological
issues.10–14 Furthermore, standard endocrine textbooks are beginning to embrace
the nomenclature in the cognate chapters.15,16 The International Society for Hypospa-
dias and Intersex Disorders (ISHID) entitled its second World Congress: Hypospadias
and Disorders of Sex Development. The logic of the revised nomenclature is self-
evident; true hermaphroditism is replaced by descriptive terminology which recog-
nizes that the disorder can only be defined by knowledge of gonadal histology, which
describes the presence of ovarian follicles as well as testicular tissue. Of course, the
karyotypic prefix may be 46,XX (the most frequent), 46,XY or 46,XX/46,XY. The sex
reversal nomenclature is one generally favoured by mammalian geneticists but lends
itself readily for translocation to the new nomenclature.

CAUSES OF DSD: A NEW CLASSIFICATION

There are numerous modes of classification to bewilder the reader with exhaustive
lists of all the possible causes of DSD. No system is perfect, and all will date as ad-
vances in molecular genetics result in improved diagnostic insight. Table 2 applies
the revised nomenclature in the context of setting out three main diagnostic cate-
gories of DSD. One of the categories is retained as ‘sex chromosome anomalies’ as
these remain a major component of the causes of DSD. Turner and Klinefelter syn-
dromes are classically described as not being associated with abnormalities of the gen-
italia at birth, but this is not necessarily the case with Klinefelter syndrome where
severe genital anomalies may occur.17 Advances in molecular techniques such as mi-
croarray-based comparative genomic hybridization (CGH), quantitative fluorescent
Table 1. Nomenclature relating to disorders of sex development (DSDs).

Previous Proposed

Intersex Disorders of sex development (DSDs)

Male pseudohermaphrodite 46,XY DSD

Undervirilization of an XY male

Undermasculinization of an XY male

Female pseudohermaphrodite 46,XX DSD

Overvirilization of an XX female

Masculinization of an XX female

True hermaphrodite Ovotesticular DSD

XX male or XX sex reversal 46,XX testicular DSD

XY sex reversal 46,XY complete gonadal dysgenesis



Table 2. A proposed classification of causes of disorders of sex development (DSDs).

Sex chromosome DSD 46,XY DSD 46,XX DSD

A: 47,XXY (Klinefelter

syndrome and variants)

B: 45,X (Turner syndrome

and variants)

C: 45,X/46,XY (mixed

gonadal dysgenesis)

D: 46,XX/46,XY

(chimerism)

A: Disorders of gonadal

(testicular) development

1. Complete or partial

gonadal dysgenesis

(e.g. SRY, SOX9, SF1,

WT1, DHH etc)

2. Ovotesticular DSD

3. Testis regression

A: Disorders of gonadal (ovarian)

development

1. Gonadal dysgenesis

2. Ovotesticular DSD

3. Testicular DSD (e.g. SRYþ,

dup SOX9, RSP01)

B: Disorders in androgen

synthesis or action

1. Disorders of androgen

synthesis

LH receptor mutations

SmitheLemlieOpitz

syndrome

Steroidogenic acute

regulatory protein mutations

Cholesterol side-chain

cleavage(CYP11A1)

3b-hydoxysteroid

dehydrogenase 2 (HSD3B2)

17a-hydroxylase/17,20-lyase

(CYP17)

P450 oxidoreductase (POR)

17b-hydoxysteroid

dehydrogenase(HSD17B3)

5a-reductase 2 (SRD5A2)

2. Disorders of androgen action

Androgen Insensitivity

Syndrome

Drugs and environmental

modulators

B: Androgen excess

1. Fetal

3b-hydoxysteroid

dehydrogenase 2

HSD3B2

21-hydroxylase (CYP21A2)

P450 oxidoreductase (POR)

11b-hydoxylase (CYP11B1)

Glucocorticoid receptor

mutations

2. Fetoplacental

Aromatase (CYP19)

deficiency

Oxidoreductase (POR)

deficiency

3. Maternal

Maternal virilizing

tumours (e.g. luteomas)

Androgenic drugs

C: Other

1. Syndromic associations of

male genital development

(e.g. cloacal anomalies,

Robinow, Aarskog, Hand-Foot-

Genital, popliteal pterygium)

2. Persistent Müllerian duct syndrome

3. Vanishing testis syndrome

4. Isolated hypospadias (CXorf6)

5. Congenital hypogonadotropic

hypogonadism

6. Cryptorchidism (INSL3, GREAT)

7. Environmental influences

C: Other

1. Syndromic associations

(e.g. cloacal anomalies)

2. Müllerian agenesis/

hypoplasia e.g. MURCS)

3. Uterine abnormalities

(e.g. MODY5)

4. Vaginal atresis

(e.g. KcKusickeKaufman)

5. Labial adhesions
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polymerase chain reaction (QF-PCR) and pyrophosphorolysis-activated polymeriza-
tion (PAP) for analysis of free fetal DNA from maternal blood and amniotic fluid
samples are already being applied in clinical practice for detecting chromosome
aneuploidy and for prenatal sexing.18–24

One benefit of the ability to detect fetal DNA in maternal plasma is the avoidance
of dexamethasone treatment for a pregnancy at risk for CAH, when a male fetus can
be identified as early as 7 weeks of gestation by analysis of the Y chromosome with
SRY-specific probe (personal observation). Cell-free fetal DNA has a very short half-
life (a matter of minutes) as compared to that of fetal cells that can persist for decades
postpartum.25 However, it is important to process the maternal blood sample using
more than one centrifugation step, otherwise remnants of intact fetal cells from a pre-
vious pregnancy may be a contaminant.26 A new technique requires careful validation
before being applied to deriving information as critical as fetal sexing which is subse-
quently used in deciding treatment plan. It is estimated that fetal DNA can be detected
as early as 5 weeks of gestation, and this is 100% accurate by 8 weeks, based on a Y-
specific DAZ repetitive probe.27 The combination of reverse transcriptase polymerase
chain reaction (RT-PCR) detection and the PAP assay provides both sensitivity and
specificity of 100%, with 95% confidence for the risk of an erroneous result being
<8.1%.23 When the fetal DNA analysis predicts female sex, a maternal discrimination
test needs to be performed with several polymorphic markers, or a universal fetal
DNA marker used in maternal blood which is methylated in maternal DNA but hypo-
methylated in the placenta.28 It is our practice to perform the free fetal DNA analysis
starting at 7–8 weeks of gestation and re-check the result in a sample collected 1 week
later. There is a 21% rise in fetal DNA levels per week of gestation during the first
trimester of pregnancy.29 Home testing kits are now advertised, with names such as
‘Baby Gender Mentor’, whereby capillary blood spots can be collected onto filter pa-
per for dispatch to the laboratory, with a fetal sexing result promised within 24–48
hours. Although the website provides precise details of when in pregnancy the sample
should be collected and what complicating factors may render the test unreliable, it
does not provide data on validation and quality control. It is also of some concern
that unregulated public access to such important tests has not been formally consid-
ered with respect to ethical issues.30

It is logical that the karyotype should underpin the other two categories shown in
Table 2 for the new DSD classification system. The advances in cytogenetics and mo-
lecular genetics are now applied to sex chromosome analysis, with impressive rapidity
in the provision of results. The XX DSD and XY DSD categories are both subdivided
according to a primary disorder of gonad development versus a disorder of sex-
steroid biosynthesis arising from an otherwise morphologically normal gonad. In the
case of XX DSD, this is generally extraneous to the gonad, as exemplified by 21-
hydroxylase deficiency.

CAUSES OF XX DSD

CAH remains the commonest cause of ambiguous genitalia of the newborn, whatever
classification system is used in DSDs. The new classification system takes cognizance
of a few additions to the limited list of causes of XX DSDs. Aromatase deficiency is
now a well-characterized disorder of steroidogenesis, one of whose manifestations
is the notable double virilizing effect on the mother and her female newborn from
excess fetal androgen substrates.31,32 Different tissue-specific promoters regulate
the expression of aromatase in oestrogen-producing locations such as the placenta,
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ovary, breast, and adipose tissue. In the case of XX DSD, there is exposure of the
mother and a female fetus to fetal adrenal androgens that are normally aromatized
by the fetally derived placenta. Only a total of seven virilized female infants with aro-
matase deficiency who fail to feminize at puberty have been reported.33 Affected males
are normal at birth, but present in early adulthood as excessively tall with delayed
bone maturation, decreased bone mineralization, and features of the metabolic
syndrome.

As with most disorders of steroidogenesis, there can be variability in phenotypic
expression of this enzyme deficiency. Levels of residual aromatase activity of mutant
enzymes as measured in vitro are generally associated with some breast development
at puberty.34 Indeed, it is possible to predict Tanner staging of breast development at
puberty on the basis of quantitative aromatase activity, with up to 20% activity realizing
stage 4 as well as normal uterine growth. A similar predictability with functional anal-
ysis of mutant 21-hydroxylase enzymes together with molecular modelling has been
shown to distinguish classical from non-classical forms of CAH.35 The key to consid-
ering aromatase deficiency as a cause of XX DSD includes the history of recurrent
maternal virilization in subsequent pregnancies with resolution in the non-pregnant
state. Other sources that are maternal in origin need to be excluded, such as polycys-
tic ovarian syndrome, luteoma and hyperreactio luteinalis, although the latter two con-
ditions rarely recur. Sometimes there can be severe recurrent virilization during
pregnancy without a known cause.36

Cytochrome P450 oxidoreductase (POR) deficiency is the latest addition to the list
of causes of XX DSD. This condition only emerged as a distinct entity through the re-
alization that apparent combined deficiencies of 17-hydroxylase and 21-hydroxylase
enzymes is a single disorder due to lack of POR, a membrane-bound flavoprotein
that plays a central role in electron transfer from NADPH to P450 enzymes.37 It
was initially characterized in patients with Antley–Bixler syndrome (a skeletal dysplasia
syndrome comprising craniosynostosis, brachycephaly, radio-ulnar/humeral synostosis
and bowed femora) in whom some had ambiguous genitalia and abnormal steroidogen-
esis.38,39 Most patients with Antley–Bixler syndrome have an autosomal dominant
activating mutation in the FGFR2 (fibroblast growth factor receptor 2) gene but do
not have genital anomalies. In contrast, mutations in POR were only found when
the syndrome was associated with genital anomalies and an abnormal pattern of
steroids. Subsequently, it has been established that POR deficiency can cause DSD
unassociated with a skeletal dysplasia characteristic of the Antley–Bixler syndrome.
Reference to Table 2 shows that POR deficiency uniquely falls in both camps of
disorders relating to XX DSD and XY DSD. How this occurs is illustrated in Figure 1.

POR is a cofactor to all microsomal cytochrome P450 enzymes, which include 17-
hydroxylase and 17,20-lyase combined activities, 21-hydroxylase and aromatase.
17,20-Lyase activity is impaired more than 17-hydroxylase activity by POR deficiency,
resulting in a disproportionate accumulation of 17OH-progesterone compared with
androgens. This increased substrate may be converted efficiently to 5a-reduced an-
drogens by a newly proposed ‘back-door pathway’ to potent androgens such as
DHT.40 The primary evidence for such a pathway is found in the Tamar wallaby, but
there are indirect data to suggest that such a pathway may operate specifically in
human fetal steroidogenesis.41,42 Aromatase activity would also be affected by POR
deficiency, hence increasing fetal androgens and contributing to virilization in an af-
fected female fetus. Paediatric endocrinologists have been intrigued by the observation
in some infants with the severe form of CAH of a mismatch between markedly ele-
vated serum 17OH-progesterone levels yet only a modest increase in testosterone
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and mild virilization. This may be partly explained by the finding of a heterozygous
POR mutation in a severe salt-loser with a proven CYP21 mutation causing CAH
but only mild virilization.43 The observation is a unique example of an autosomal re-
cessive disorder manifesting in the heterozygous state. POR as a cause of XY DSD has
a relatively simple explanation based on POR deficiency having a more profound effect
on 17,20-lyase activity, a key regulator of androgen biosynthesis.44
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The pathways of steroidogenesis depicted in Figure 1 suggest that the dichotomy in
the effects of POR deficiency on XX DSD and XY DSD can be rationally explained.
However, the reality is a more complex melange of interacting pathways that are
variously affected according to the nature of individual POR mutations.45,46 It has
been proposed that POR deficiency may represent the commonest form of CAH.
That may be the case, bearing in mind the pleiotropic function of POR as a cofactor
in steroidogenesis. It is clear that specific steroid analysis has a role to play in the in-
vestigation of DSD of no apparent cause, particularly in idiopathic under-masculinized
states. Analysis of urinary steroid profiles by gas chromatography/mass spectrometry
detects the biochemical signature of the ‘back-door pathway’ characterized by in-
creased pregnanediol, pregnanetriolone, and pregnanetriol, and an increased andros-
terone/aetiocholanolone ratio.47 Applying this test routinely in the investigation of
unestablished causes of DSD should in time enable a reliable estimate of the preva-
lence of non-syndromal POR deficiency to be established.

Disorders of gonadal development under the umbrella of XX DSD are relatively
infrequent if Turner syndrome is excluded as a mainstream DSD. Until recently, there
has also been little evidence of the presence of ovary-specific gonad-determining fac-
tors whose inactivation would result in a form of gonadal dysgenesis. The concept that
there may be ‘anti-testis’ genes to enable ovarian determination to occur arose as a re-
sult of observing the effects of over-expression of genes such as DAX-1 and WNT4
from duplications in chromosomal regions Xp21 and 1p35, respectively.48,49 However,
DAX-1 cannot be considered an ovarian-determining gene as its targeted disruption in
XX mice does not abrogate normal ovary development.50 It is more appropriate to
consider ovarian development in the context of a balance between the opposing
forces of male- versus female-promoting factors. Tipping the balance in one direction
by inactivating one of these factors may be sufficient to realize sex reversal.51 This idea
recapitulates a concept espoused some time ago which stated that a putative gene,
named ‘Z’, is expressed in the XX gonad and represses the testis-determining pathway,
thus allowing an ovary to develop.52 The corollary is that SRY is a testis inductor by its
action in repressing a repressor, alias ‘Z’. The ‘Z’ hypothesis has underpinned one plau-
sible explanation as to how a testis can form in the 10% of XX males who lack an SRY
gene.53 The balancing act to determine the fate of gonad development probably in-
volves an interplay between the FGF and WNT4 signalling pathways. Male-to-female
sex reversal results from mutations in Fgf9, whereas female-to-male sex reversal, albeit
partial, occurs when Wnt4 is mutated.54 There are now case reports of WNT4 mu-
tations in humans demonstrating partial female-to-male sex reversal, thus implying
a role for this signalling molecule in the ovary.55–57 More persuasive evidence of a spe-
cific ovarian inducer is based on complete female-to-male sex reversal associated with
an inactivating mutation in the human R-spondin1 (RSPO1) gene.58 This growth factor
activates the WNT4–catenin signalling pathway, suggesting that RSPO1 and WNT4 act
cooperatively to antagonize testis determination in XX gonads. Figure 2 proposes how
a delicate balance between SOX9/FGF9 and WNT4/RSPO1 in the indifferent gonad
may be played out in determining the fate of the gonad.59
CAUSES OF XY DSD

Disorders which come under the XY umbrella of the DSD classification are far more
numerous, but paradoxically the success rate in establishing a precise diagnosis is far
lower than in XX DSD. The observation that only 10–15% of cases of complete



Figure 2. Model of opposed signals in mammalian sex determination (SDM). (A) In the bipotential gonad,

male-promoting (SOX9 and FGF9) and female-promoting (WNT4 and possibly RSPO1) hold each other in

check. (B) The presence of SRY (XY) reinforces the positive feedback between SOX9 and FGF9, which then

out-competes the female signals and drives testis differentiation. In the absence of SRY (XX), the female-pro-

moting signals shut down the male loop and drive ovarian differentiation. Reproduced from DiNapoli and

Capel (2007, Molecular Endocrinology Sept 20 Epub ahead of print) with permission.
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gonadal dysgenesis (Swyer syndrome) are caused by a mutation in SRY has spawned
the idea that a multitude of other genes must be involved in testis determination. Can-
didate genes explored on the basis of knowledge of the phenotype of mouse knockout
models include DAX-1, SF-1, WNT4, SOX3, LHX9 and FOG-2.60–63 Almost never is
a mutation identified which explains the sex reversal. However, there is now increasing
evidence from single case reports and analysis of cohorts of patients with gonadal dys-
genesis that haplo-insufficiency of SF-1 as a result of heterozygous mutations of this
gene are a relatively frequent cause of XY DSD without adrenal insufficiency.64–68

One mutation located uniquely in the ligand-binding domain (Leu437Gln) was identi-
fied in a male with penoscrotal hyopspadias.66 This widens the phenotype considerably
for de novo/germ-line or X-limited dominant mutations of SF-1. Bilateral congenital
anorchia (vanishing testis syndrome), when associated with micropenis, may also result
from a heterozygous mutation in SF-1.69 There are several syndromic causes of
gonadal dysgenesis associated with known genes – such as campomelic dysplasia
(SOX9), a-thalassaemia/mental retardation (ATRX), Denys–Drash syndrome (WT-
1), and X-linked lissencephaly (ARX) – but mutations have rarely been identified in
association with gonadal dysgenesis alone.

The new classification embraces the numerous and previously well-documented
defects in androgen biosynthesis. It includes the aforementioned syndrome of P450
oxidoreductase deficiency as it applies to XY DSD, a defect in the fetus-specific
‘back-door’ pathway to DHT synthesis. If androgen (including DHT) production is
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normal, then a defect in androgen signalling must be considered. In the context of
causes of XY DSD, resistance to the action of androgens is the commonest cause,
akin to CAH in the causation of XX DSD. The paradigm for resistance to androgens
is CAIS, formerly known as the testicular feminization syndrome. This is a further ex-
ample of a changing nomenclature brought about by expressions of disquiet about the
former terminology from individuals who have CAIS. The clinical description has
changed little from that originally given in detail by Morris and sometimes epony-
mously attributed to his name.70 In contrast, advances in molecular genetics have pro-
vided an explanation for the pathogenesis of the phenotype in the majority of subjects
with CAIS. Missense and nonsense mutations, common to many single-gene disorders,
also feature to cause inactivation of the AR. Androgen insensitivity may also result
from mutations which disrupt the intramolecular interaction between the N-terminal
and C-terminal regions of the AR, a requirement of transcriptional activation that is
unique to the AR.71–73 Another functional defect that can (rarely) cause androgen in-
sensitivity is failure of trafficking of the AR to the nucleus.74 When no mutation is
found in the coding region or intron/exon boundaries of the AR gene, some defect
in the interaction of the AR with one of a myriad of co-regulator proteins may be in-
voked.75 The absence of a putative AR-specific co-activator in genital skin fibroblasts
from a patient with CAIS and a normal AR gene has been reported, but there has been
no subsequent report as to the identity of the protein.76,77

Partial androgen insensitivity syndrome (PAIS) is defined by a phenotype comprising
variable degrees of under-masculinization despite normal age-related androgen pro-
duction and AMH function (as shown by absence of Mullerian structures) and normal
testis histology. The syndrome is proven to be a defect in androgen signalling in only
a minority of cases.78,79 What causes partial resistance to androgens in the majority of
subjects with the phenotype of PAIS remains a biological mystery. The phenotypes of
AR-mutant-positive and AR-mutant-negative cases of PAIS are almost indistinguish-
able, although a positive family history is found more commonly in the former cate-
gory.80 Furthermore, there is a strong association between severe hypospadias (a
common feature of PAIS) and low birth weight.81,82 Intrauterine growth restriction
(IUGR) is characteristically the result of a decrement of growth rate occurring in early
fetal life, a period which coincides with completion of urethral development.83 It is
plausible that epigenetic effects may modulate early fetal development through the
methylation status of fetal growth genes such as H19 and IGF2.84 This hypothesis
would need to be tested in monozygotic twins discordant for IUGR and hypospadias.
Overall, the diagnostic yield when molecular analyses are applied to XY DSDs is cou-
pled with variable success, with figures of 60–90% for CAIS and androgen biosynthetic
disorders, whereas the rate is considerably lower in gonadal dysgenesis and PAIS (see
Figure 3). There is considerable scope for rectifying this unsatisfactory situation
through more detailed defining of DSD phenotypes and increased collaboration be-
tween clinicians and molecular geneticists.

A new phenomenon which now needs to be included in DSD classification is the
observation that some disorders – such as undescended testis and hypospadias – may
be linked to the effects of environmental chemicals on the developing male reproduc-
tive tract.85,86 There are plenty of potential culprits contained within the environ-
mental soup of 100,000 chemicals to which humans are exposed.87 It appears that
the mechanism of the effect is an imbalance in the androgen/oestrogen equilibrium
prevailing during fetal life, although some compounds are specifically oestrogenic
or anti-androgenic in their mode of action. Others may interfere with the pathway
of sex-steroid biosynthesis.88 A concomitant change in testis cancer prevalence
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and sperm counts has given rise to the proposal that this quartet of male reproduc-
tive tract disorders constitutes a testis dysgenesis syndrome (TDS) which has its or-
igins in fetal life.89 It is an attractive unifying hypothesis to invoke an environmental
cause. Chemicals such as phthalates and pesticides may cause endocrine-disrupting
effects. Most of the reproductive toxicological effects of such compounds have
hitherto been demonstrated only in animal experiments. A reliable and reproducible
marker of anti-androgenic effect in rodent studies is the reduction in ano-genital dis-
tance (AGD) in male offspring following administration of a compound such as the
antifungal agent vinclozolin to pregnant dams.90 There are now data for this anthro-
pometric measurement in human newborns demonstrating that the AGD is larger in
males than in females, and that the length is inversely related to the level of pesticide
exposure during pregnancy, as documented in maternal urine samples.91 Such a rela-
tively simple marker of exposure now allows further epidemiological studies to de-
termine whether there are changing patterns of urogenital disorders in humans
which can be linked to environmental effects.

IMPACT OF THE NEW DEFINITION AND CLASSIFICATION

There is already evidence that health professionals involved in the management of fam-
ilies with DSD are moving towards a universal language of communication. This is seen
in scientific publications, in conference programming, and in standard textbooks of en-
docrinology.15 The Consensus firmly places the need for psychosocial support at the
heart of team management for DSD, recognizing that medical and surgical issues are
not the sole components of care. What is conveyed to the parents of a newborn infant
with ambiguous genitalia in the first hours after birth will imprint on their minds for
years to come. Is it not too fanciful to think that a clinical psychologist should not,
de facto, be part of the multidisciplinary team imparting knowledge at this early critical
stage? The changes in terminology have largely gained favour from patient advocacy
groups. Supportive arguments include clarity of terms which are inclusive of numerous
conditions affecting the urogenital tract, use of terms that refer only to the clinical
manifestations of a condition and not to the psychosexual characteristics of an individ-
ual, and enablement of improved chances of optimal care when heterogeneous condi-
tions are classified under one generic umbrella.4
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The impact on DSD management in terms of tumour risk is directly the result of an
evidence base generated in recent years from a number of centres which have data on
gonadal histology across a range of conditions which cause DSD.13,92,93 The choice of
timing of gonadectomy in CAIS, for example, can now be made on the basis of an op-
tion to allow spontaneous onset of puberty from endogenous oestrogen production
coupled with a low tumour risk into adulthood. There has been a sea change in
surgical practice with the recognition that sex assignment is not inextricably linked
to surgical intervention, and there is often an opportunity to allow the affected child
to reach an age of sufficient cognitive development to become involved in management
decisions that will have lifelong implications. Above all, health professionals and patient
advocacy groups are beginning to work in close harmony rather than in discord, and
recognize that together they must address the enormous uncertainties that pervade
the management of DSD.

THE FUTURE

It is clear that the Consensus statement raised more questions than it answered.
There is recognition that more research is needed to improve diagnosis, refine med-
ical, psychological and surgical management, and above all gather evidence on out-
come. Information on outcome is particularly sparse in XY DSD. Such research is
best conducted in a multicentre, multidisciplinary manner to enable sufficient num-
bers of cases to be studied. Progress on this front is under way in Europe through
the auspices of the European Society for Paediatric Endocrinology supporting the
establishment of a register of DSD patients investigated following agreed protocols.
Allied to this activity is funding from the European Community for a multination
study of the molecular pathogenesis of DSD and its longer-term outcome. All
participants in the research programme are operating on the basis of implementing
the new DSD nomenclature and classification that brings with it a clarity of purpose
to the research.
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